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THE QUENCHING OF BIACETYL PHOSPHORESCENCE BY ALKENES
A DISSECTION OF RATE EFFECTS ON EXCIPLEX FORMATION AND EXCIPLEX DECAY
FOR KETONE TRIPLET QUENCHING

Guilford Jones, II, Mahalingam Santhanam, and Sheau-Hwa Chiang

ABSTRACT

The quenching of biacetyl phosphorescence by alkenes in benzene solution

at room temperature has been observed. Stern-Volmer quenching constants which

4 7

range from 1 x 10" to 1 x 10 M sec'], correlate with the ionization poten-

tials of alkene quenchers. The slope of the correlation line (A log kq/AlP) X
is -1.90 ev']. a value similar to IP dependences found in other studies of m
ketone fluorescence and phosphorescence quenching by alkenes, Constants for i
the quenching of phosphorescence of several ketones by a given alkene are ‘

compared. The data, which include relatively low values for biacetyl quenching,

do not reflect electron donor-acceptor properties of ketones and quenchers but

show more complex dependences. The results are consistent with the formulation

Pon ey "

of the empirical quenching constant as a product of an equilibrium constant for

the formation of an excited complex of ketone triplet and alkene (a constant

relatable to the mutual polarizability of the encounter pair) and a rate

constant for exciplex decay (which represents a number of competing

processes). fo e
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Preliminary Note

THE QUENCHING OF BIACETYL PHOSPHORESCENCE BY ALKENES. A DISSECTION OF RATE
EFFECTS ON EXCIPLEX FORMATION AND EXCIPLEX DECAY FOR KETONE TRIPLET QUENCHING

GUILFORD JONES, II,* MAHALINGAM SANTHANAM, AND SHEAU-HWA CHIANG

Department of Chemistry, Boston University, Boston, Massachusetts 02215 (U.S.A.)

1 The quenching of ketone phosphorescence by alkenes has been the subject of a
§ number of 1nvestigations.‘ The relationships of structure and reactivity

for the interaction of ketone triplets and alkenes are amportant to the under-
standing of the well known oxetane ring-forming Paterno-Buchi reaction (eqn l).r

A number of ketone/alkene pairs appear to undergo cycloaddition by a triplet

path.3 Biacetyl has been shown to participate in the Paterno-Buchi cyclo-

addition in competition with a photochemical ene addition to a\kenos;4 a f
triplet mechanism including diradical intermediates (e.q., I) has been suggest- g
ed.5 We wish to report results concerning the quenching of biacetyl triplets ;
by alkenes including those important in photocycloaddition. j

1

Lot . |

The quenching by a series of alkenes of steady-state blacetyl phosphor-

i e Sl T i

RN e R

escence in nitrogen-purged or degassed benzene solutions at room temperature
was analyzed using conventional procedures (Perkin Elmer MPF44A instrument).
Values of kqto from Stern-Volmer plots along with quenching constants kq. cal-
culated assuming a biacetyl triplet lifetime (Yo) of 0.46 m56 and ncluding

data from the literature, are shown in Table 1. L




Table 1. Stern-Volmer Constants for Quenching of Biacetyl Phosphorescence

by Unsaturated Compounds

a -1 = 2 =
Quencher IPv(eV) quO(M ) kq(M ‘sec. ! x 10

2,5-dimethyl-2,4-hexadiene
hexamethyldewarbenzene
indole

N-methylpyrrole
trans-1-phenylpropene
dihydropyran
tetramethylethylene
indene

cyclohexene

furan

norbornene

ethyl vinyl ether

8.
8.
8.
8.
8.
8.
8.
9
9.

trans-2-hexene

b
(=]

methacrylonitrile

Aronization potentials from the literature, most from photoelectron spectra.

be Fujimori, Mol. Photochem., 6, 91 (1974). ®H.L.J. Backstrom and K. Sandros,

Acta Chem. Scand., 14, 48 (1960). dR.R. Sauers, P.C. Valenti, and E. Tauss

Tetrahedron Lett., 3129 (1975).
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The pattern of quenching constants as a function of alkene structure
was most readily related to electron donor properties of the alkenes. A
reasonable fit of the data with alkene ionization potentials (correlation
coefficient = 0.939) is shown in Figure 1. The unusually effective quencher,
2,5-dimethy1-2,4 -hexadiene (DMH) was not included in the correlation since
energy transfer from biacetyl (ET = 56 kcal/mol) to DMH (ET < 56 kcal/mo]7)
is probably important (energy transfer quenching of dicarbonyl triplets by
conjugated dienes has been previously documentedﬁ’g)'

The dependence of quenching constant on alkene ionization potential is
consistent with the behavior of other ketone trip]ets1 and is reminiscent
of relationships established for the quenching of alkanone and alkanal

fluorescence. A summary of data (Table 2) shows the nearly uniform depend-

ence of emission quenching rate for n,m* carbonyl excited states on the electron

donor properties of alkenes. The slopes of IP plots (A log kq/A IP) average

-1.78 t+ 0.38 eV-1-

In studies of carbonyl emission quenching, apparent donor-acceptor inter-

action has been usually associated with the formation of excited comp1exes.1’9']2

Although exciplexes of simple ketones and alkenes have not been directly de-
tected, their intermediacy (in fluorescence quenching) has been inferred from
the temperature dependence of quenching constants.9 Deviant Stern-Volmer be-

havior has been associated with reversible formation of exciplexes in the

quenching of glyoxal phosphorescence by alkenes in the gas phase.13

For bimolecular decay of biacetyl triplets and alkenes, reversible exciplex
formation and deactivation involve the following steps

k
3 — 3 .

Bl + AKX 2

EXC —=——» PRODUCT + BI + ALK
-1
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Figure 1. The dependence of biacetyl phosphorescence quenching constant on
the 1on;zation potential (eV) of alkene quenchers {data from
Table 1).
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For this simple kinetics scheme, the phosphorescence quenching constant is

R, K,

G 117—;‘—' (3)

- 2
and kq = Ky k2 if k_] >> kz
The dependence of quenching rate on alkene ionization potential follows from

proportion&lities associated with charge transfer within sensitizer-quencher

14
encounter pairs.

S < A < T il T

P -
log kq« log Kl“ AGCt on IP

oo

§ AGct o, R Cred - RS R (4) §

i
i where on and Ered are standard redox potentials for alkenes and biacetyl in
H

2
their electronic ground states, ET is the biacetyl excitation energy and f;

is a coulombic term.15

T TN 7 T v S

Loutfy and his coworkers] have used eqn 4 in an extensive treatment of
reversible exciplex kinetics for alkene quenching of ketone phosphorescence,
The implication of this work is that for a given ketone and a series of quenchers
log kq &« log K] is the important relation, whereas structural effects on k2

are less important and not related to the principal donor-acceptor interaction i

represented by K]. (For acetone and donor alkenes a 200 fold range was cal-
culated for K1 as opposed to 20 fold change in k2 in the opposite direction.l) it
We have paid special attention to the change in phosphorescence quenching con-
stant for a series of ketones with a single alkene. The sample of data (Table
3) taken from other studies and including our biacetyl results shows that ¢

structural changes in ketone lead to large variations in quenching constants.

Importantly, the dependence is not readily associated with the redox driving

i




Table 2. The Quenching of Emission from n,n* Carbonyl Excited States by

Alkenes as a Function of Quencher lonization Potential

System Solvent IP Dependencea Ref

Fluorescence quenching

acetone/alkenes hexane -1.28 9

acetone/enol ethers acetonitrile -2.10 10
biacetyl/alkenes acetonitrile -2.10 1N
biacetyl/enol ethers acetonitrile -2.70 11

Phosphorescence quenching

acetone/alkenes acetonitrile -1.66 1

acetone/enol ethers acetonitrile -1.50 10

benzophenone/enol ethers freon -1.65 10 g

butyrophenone/alkenes benzene -1.09 12 1

biacetyl/alkenes benzene -1.90 this work é
r

3510pes of plots of log kq vs IP (ionization potentials of alkenes). |
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force for the ketones (Ered + ET)'
Since exciplex formation constants are expected to be similar for

different ketones and a single quencher (AG_. is almost constant, suggesting

o
similar values for Ky assuming common coulombic and entropy factors), relative
quenching rates may reflect changes in exciplex decay rate. The makeup of

k2 is complex; it includes rate constants for product formation as well as
parameters for unproductive decay to ketone and starting alkene. One factor
that is likely to be important is the ketone excitation energy (the most im-

portant driving force for mounting decay barriers) revealed in the general

diminished reactivity of biacetyl 6’]6. If the sequence, 3ketone - 3exciplex +
3 1

diradical is important, 7 then diradical stability (which along
with E; determines the exothermicity of diradica) formation) will be reflected
in kz.

For diradical formation the effectiveness of the presumed reactive center
(carbonyl oxygen) in alkene attack may be decisive. The delocalized nature of
the non-bonding orbitals of biacetyll8 (compared with monoketones) matches the
much reduced reactivity of the dicarbonyl triplet.19 Other factors may be im-
portant in determining the rate of direct exciplex decay (not involving diradical
intermediates), including rotational and other motion away from an exciplex
geometry which affects spin-orbit coupling and the rate of intersystem crossing

to the ground state.21
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